Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations

نویسنده

  • Max H. Farrell
چکیده

This paper concerns robust inference on average treatment effects following model selection. In the selection on observables framework, we show how to construct confidence intervals based on a doubly-robust estimator that are robust to model selection errors and prove that they are valid uniformly over a large class of treatment effect models. The class allows for multivalued treatments with heterogeneous effects (in observables), general heteroskedasticity, and selection amongst (possibly) more covariates than observations. Our estimator attains the semiparametric efficiency bound under appropriate conditions. Precise conditions are given for any model selector to yield these results, and we show how to combine data-driven selection with economic theory. For implementation, we give a specific proposal for selection based on the group lasso and derive new technical results for high-dimensional, sparse multinomial logistic regression. A simulation study shows our estimator performs very well in finite samples over a wide range of models. Revisiting the National Supported Work demonstration data, our method yields accurate estimates and tight confidence intervals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doubly robust estimation of the local average treatment effect curve.

We consider estimation of the causal effect of a binary treatment on an outcome, conditionally on covariates, from observational studies or natural experiments in which there is a binary instrument for treatment. We describe a doubly robust, locally efficient estimator of the parameters indexing a model for the local average treatment effect conditionally on covariates V when randomization of t...

متن کامل

Achieving Optimal Covariate Balance Under General Treatment Regimes

Balancing covariates across treatment levels provides an effective and increasingly popular strategy for conducting causal inference in observational studies. Matching procedures, as a means of achieving balance, pre-process the data through identifying a subset of control observations with similar background characteristics to the treated observations. Inference in a matched sample is unbiased...

متن کامل

A Distributional Approach for Causal Inference Using Propensity Scores

Drawing inferences about the effects of treatments and actions is a common challenge in economics, epidemiology, and other fields. We adopt Rubin’s potential outcomes framework for causal inference and propose two methods serving complementary purposes. One can be used to estimate average causal effects, assuming no confounding given measured covariates. The other can be used to assess how the ...

متن کامل

Sensitivity analysis for m-estimates, tests, and confidence intervals in matched observational studies.

Huber's m-estimates use an estimating equation in which observations are permitted a controlled level of influence. The family of m-estimates includes least squares and maximum likelihood, but typical applications give extreme observations limited weight. Maritz proposed methods of exact and approximate permutation inference for m-tests, confidence intervals, and estimators, which can be derive...

متن کامل

Inference for Approximating Regression Models

The assumptions underlying the Ordinary Least Squares (OLS) model are regularly and sometimes severely violated. In consequence, inferential procedures presumed valid for OLS are invalidated in practice. We describe a framework that is robust to model violations, and describe the modifications to the classical inferential procedures necessary to preserve inferential validity. As the covariates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013